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The linear receptivity of a swept-wing three-dimensional boundary layer is studied
experimentally and theoretically. Cross-flow instability normal modes are excited by
means of surface vibration or roughness perturbations. The resulting disturbances are
investigated, and the normal modes are linked to the source perturbations. Exper-
iments are performed under controlled disturbance conditions with a time-harmonic
source that is localized in the spanwise direction. A localized surface vibration is
used to excite wave trains consisting of cross-flow instability waves. Normal oblique
modes (harmonic in time and space) are obtained by Fourier decomposition of
the wave trains. This provides the spatial variation of the normal modes and, in
particular, the initial amplitudes and phases of the modes at the source location.
The shape of the surface vibrator is measured and used to determine the complex
receptivity coefficients for the normal modes (i.e. for various spanwise wavenumbers,
wave propagation angles, and disturbance frequencies – including zero frequency).
The experimental receptivity coefficients are independent of the specific shape of
the surface non-uniformities and can be directly compared with calculations. The
theoretical work is based on a linear approximation to the disturbance source – valid
for small forcing amplitudes. Like earlier studies on roughness-induced receptivity, the
basic flow is locally assumed to satisfy the parallel-flow approximation. The modal
response for the cross-flow instability is determined from the residue associated with
the least-stable eigenmode.

A detailed quantitative comparison between the experimental and theoretical re-
ceptivity characteristics is carried out. Good agreement is found for the roughness–
vibrational receptivity coefficients of the swept-wing boundary layer (especially for the
most-unstable cross-flow modes) over a range of disturbance frequencies and span-
wise wavenumbers. The theory correctly predicts the initial spectra for the travelling
and stationary cross-flow instabilities excited by the surface vibrations and surface
roughness, respectively. The good agreement between theory and experiment suggests
that the linear receptivity theory can be used effectively in engineering methods for
transition prediction. The experimental data can also be used for validation of other
theoretical approaches to the problem.

1. Introduction
The present study considers the three-dimensional boundary layer on a swept

wing in the region of flow acceleration. The problem of turbulence onset in three-
dimensional boundary layers has been investigated rather intensively in recent years
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because of its fundamental and practical importance (for reviews see Kohama 1987;
Zhigulyov & Tumin 1987; Reed & Saric 1989; Bippes 1990, 1999; Arnal, Casalis &
Juillen 1990; Saric 1994; Kachanov 1996; and others). There are several kinds of
instability in the swept-wing boundary layer, which are caused by different physical
mechanisms and excite different eigenmodes of the flow. The cross-flow instability
represents one of the most important, and this is the focus of the present study.

Under relatively quiet flow conditions, the boundary-layer transition location on
aircraft bodies and wings depends on four main factors: (i) the spectra of most dan-
gerous environmental disturbances, (ii) the receptivity coefficients, (iii) the boundary-
layer stability characteristics, and (iv) the leading mechanisms of nonlinear disturbance
interactions. These factors correspond to the four main aspects of the transition prob-
lem on swept wings. The present paper is devoted to a quantitative experimental and
theoretical investigation of aspect (ii).

Although there is a large amount of previous experimental work devoted to swept-
wing boundary-layer instabilities (both stationary and travelling cross-flow modes),
the work on the receptivity problem is much more limited. A brief discussion of the
state of art in this field is presented below.

In various practical situations the steady non-uniformities (roughness, waviness
and so on) of an aircraft surface, as well as surface vibrations, acoustic perturbations
and turbulence perturbations, seem to represent the most important sources for the
instability waves. On real swept wings (which always have some surface waviness
or roughness) the steady surface non-uniformities seem to dominate the generation
process for cross-flow instability modes if the free-stream turbulence is not very strong.
Even microscopic non-uniformities can have quite high magnitudes when compared
to the boundary-layer displacement thickness. These non-uniformities can produce
quite intensive instability waves resulting in a premature transition to turbulence (see
e.g. Fyodorov 1988; Kachanov & Tararykin 1990; Radeztsky et al. 1993; Crouch
1993, 1994; Radeztsky, Reibert & Saric 1994, 1999; Takagi & Itoh 1994; Gaponenko,
Ivanov & Kachanov 1996; Saric, Carrillo & Reibert 1998). In view of this, it is
of great practical importance to investigate the influence that unsteady and steady
surface non-uniformities have on transition. First, the receptivity coefficients of the
laminar boundary layer with respect to these kinds of external disturbances must be
evaluated both theoretically and experimentally.

Previous experimental investigations of the swept-wing boundary-layer receptivity
to stationary surface non-uniformities (see Kachanov & Tararykin 1990) show the
extreme complexity of directly obtaining the quantitative values of the linear recep-
tivity coefficients. Even in the best low-turbulence wind tunnels, the free stream flow
velocity has a slow temporal modulation (at frequencies less than 0.1 Hz) with a
magnitude of about 0.3–0.5%. In the presence of such background modulation, it is
almost impossible to extract the weak signal (with an amplitude of about 0.01%)
attributed to the zero-frequency instability modes generated by micro-roughness when
measuring close to the disturbance source. In experiments by Kachanov & Tararykin
(1990) an attempt was made to increase the amplitude of the steady flow disturbance
(in order to make it measurable) by means of an increased roughness height. However,
this resulted in nonlinearity of the receptivity mechanism.

Despite these difficulties some significant experimental results on the roughness
receptivity problem were obtained in the 1990s. Radeztsky et al. (1993, see also
Radeztsky et al. 1999) showed that the excitation of the cross-flow (CF) vortices
is strongly influenced by a microscopic surface roughness positioned in the vicinity
of the swept-wing leading edge. Deyhle & Bippes (1996) and Reibert et al. (1996)
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investigated the transition process induced by controlled surface roughness. However,
quantitative values of the linear receptivity coefficients were not obtained in these
(and other) previous experimental investigations.

The first theoretical study of the excitation of swept-wing CF-instability modes due
to localized surface perturbations (stationary and non-stationary) was performed by
Fyodorov (1988). Similar problems were investigated by Manuilovich (1990), Crouch
(1993, 1994), Choudhari (1994), Bertolotti (1996, 2000) and Ng & Crouch (1999)
using different theoretical approaches, and by Spalart (1993) and Collis & Lele (1999)
using numerical simulations. Choudhari (1994) and Crouch (1993) also considered
the coupling with acoustic disturbances to excite travelling modes. Bertolotti (1996)
was probably the first to perform a quantitative comparison of theoretical and
experimental (Deyhle & Bippes 1996) values of the CF-vortex amplitudes generated
by a spanwise row of roughness elements. He used both receptivity theory and
stability theory to calculate the chordwise development of the cross-flow disturbance
amplitude. The experimental and theoretical amplitudes excited by the roughness
were in good agreement. More recently, detailed comparisons were made between the
experiments of Reibert et al. (1996) and the linear theory of Ng & Crouch (1999); a
spanwise row of roughness elements was considered and the agreement was very good.

The current experimental investigation of CF-wave excitation by surface vibrations
was initiated by Ivanov (1992) and Ivanov & Kachanov (1994a, b). Experimental
results were obtained with the help of a new disturbance source designed and tested
in the Novosibirsk group in 1991–92 for the excitation of cross-flow instability waves
by means of localized surface vibrations. These works showed that surface vibrations
are quite effective in generating CF-instability waves. However, the vibration recep-
tivity coefficients were not obtained experimentally until 1994. This paper presents
the significant progress made on the experimental determination of the receptivity
amplitudes.

In the experimental part of the present study a new method of obtaining the
roughness-receptivity coefficients was developed and applied. The method incorpor-
ates an investigation of the swept-wing boundary-layer receptivity to localized surface
vibrations at several disturbance frequencies (as close to zero frequency as possible).
This information is new and is important for comparison with theory at non-zero
frequencies. In addition, the data obtained for various frequencies of vibration are
extrapolated to zero frequency. The validity of the zero-frequency limit is discussed.
Finally, coefficients for the linear receptivity to localized surface roughness are ob-
tained experimentally for various values of the disturbance spanwise wavenumber.
These coefficients are independent of the specific shape of the roughness and can be
directly compared with the linear receptivity theory.

The theoretical part of the present study is carried out within the linear framework
of the swept-wing boundary-layer receptivity to localized surface non-uniformities
developed in previous studies (see Crouch 1993, 1994). The analysis is generalized
here to allow for unsteady surface sources such as a localized vibrating membrane.
All calculations are performed for the conditions of the present experiments.

2. Methods of study
2.1. Flow-field measurements

2.1.1. Wind-tunnel and experimental model

The mean flow on an initial section of a swept wing was simulated in the experiments
by means of a swept plate with the pressure gradient induced by a contoured wall
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Figure 1. Sketch of the experimental model of the swept wing. (a) side view; (b) plan view.
1 test-section walls; 2 swept plate; 3 wall bump; 4 flap; 5 traverse; 6 localized surface vibrator.

bump mounted on the test section just above the plate (figure 1). Both the plate
and the bump had the same sweep angle χ = 25.0◦. This approach has been used
in previous studies carried out by other research groups (see Saric & Yeates 1985;
Nitschke-Kowsky & Bippes 1988; Müller 1990) and in our experimental group (see
e.g. Kachanov, Tararykin & Fyodorov 1989, 1990; Kachanov & Tararykin 1990).

The receptivity experiments were conducted in a low-turbulence subsonic wind
tunnel at the Institute of Theoretical and Applied Mechanics (Novosibirsk). The
experimental model was mounted in the test section (1 × 1 × 4 m) at zero attack
angle. The turbulence level ε in this wind tunnel at a free-stream velocity of about
5 to 10 m s−1 is usually less than 0.02% (in the frequency range higher than 1 Hz).
The contoured wall bump introduced some additional disturbances into the flow,
and at the conditions of the present experiments the r.m.s. value of ε (determined as
ε = u′/Ū0) was somewhat higher, around 0.06% over the same frequency range.

The mean-flow structure and the velocity disturbances were measured by a hot-wire
anemometer. The hot-wire probe was mounted on a traversing mechanism and had
an accuracy of the positioning of ∆x̄ = ±0.1 mm along the streamwise coordinate
x̄, ∆z̄ = ±0.1 mm along the spanwise coordinate z̄, and ∆y = ±0.005 mm along
the normal-to-wall coordinate y. The main coordinate systems used in the present
experiments are the following (see figure 1). The coordinate system (x̄, z̄) is connected
with the free-stream direction (upstream of the model) with the vector U 0 parallel to
the x̄-axis. The coordinates (x, z) are aligned with the z-axis parallel to the leading
edge of the model. The coordinate system (x∗, z∗) is local, such as the x∗-axis is directed
along the vector U e of the potential flow near the external edge of the boundary
layer. Note that for the chosen directions of the axes z̄, z, and z∗, all three coordinate
systems are left-handed. This choice is convenient because the corresponding two-
dimensional systems, like (x̄, z̄), (x, z), and (x∗, z∗), are right-hand systems in this case.
Two additional coordinate axes are also used in this paper. The x̄c-coordinate is like
the x̄-coordinate, but it has its origin on the leading edge of the model (at the line
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Figure 2. Sketch of the disturbance source (the surface vibrator). 1 surface of the model; 2 source
body; 3 plastic membrane; 4 rubber washer; 5 adjusting screws; 6 outlet of pneumatic pipe.

x = 0). The zc-coordinate is like the z-coordinate but it has its origin on the central
line of the model z̄ = 0.

2.1.2. Excitation of disturbances

The experiments were carried out under controlled disturbance conditions. The
surface non-uniformities were simulated by means of a pneumatic surface vibrator,
presented in figure 2. The membrane of the source was made of a plastic film and
driven by pressure fluctuations produced by a loudspeaker connected to the source
by a plastic pipe (for more detail see Ivanov, Kachanov & Koptsev 1997). The source
was positioned at x̄ = 446 mm, z̄ = 0 (x = 404.2 mm). This generator produced wave
trains in the boundary layer (i.e. disturbances that are harmonic in time and localized
in the spanwise direction), which consisted of the cross-flow instability modes inclined
at various angles to the flow direction (see Gaponenko, Ivanov & Kachanov 1995).
The wave trains were decomposed into normal oblique modes, harmonic in time and
space, according to the procedure described in Gaponenko et al. (1995). For the case
of a two-dimensional boundary layer a similar procedure is described in detail by
Kachanov & Michalke (1994). After spectral decomposition, a special data-analysis
procedure was applied to obtain the flow receptivity characteristics. This procedure is
described below in §§ 2.2, 2.3.

2.1.3. Procedures and regimes of measurement

The measurements were made using a DISA 55M10 hot-wire anemometer and
linearized by a DISA 55D10 analog linearizer. The mean value of the output voltage
(i.e. the DC-component of the voltage), proportional to the x̄-component of the mean
flow velocity, was computer sampled. The AC-component of the voltage from the
linearizer output (proportional to the x̄-component of the flow velocity fluctuations)
was filtered in the range from 1 Hz to 2 kHz, in order to cut off the DC-component and
high-frequency instrumentation noise, respectively. Data sampling was synchronized
to the signal generator used for driving the source. The disturbance frequency and
amplitude were kept constant with high accuracy and measured by a frequency meter
and a voltmeter. At each spatial position, four primary quantities were measured:
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f (Hz) 24.8 21.43 17.9 15.0 12.0 9.02
F (at x = 404.2 mm) 60.7 52.4 43.6 36.5 29.5 22.2
Am0 (mm) 0.074 0.068 0.068 0.066 0.068 0.042
Am0/δ1s 0.061 0.056 0.054 0.056 0.056 0.034

Table 1. The six measurement regimes.

(i) the mean flow velocity, (ii) the r.m.s. intensity of the total velocity fluctuations,
(iii) the phase and (iv) the r.m.s. amplitude of the velocity disturbance at the frequency
of excitation.

In all regimes of excitation used for the receptivity measurements, the amplitude
of the vibration was chosen to be low enough to provide linear mechanisms for
the generation and development of the instability modes. This was under permanent
control during the experiments. The amplitude of vibration could be varied without
changing the spatial distribution of the membrane.

The main measurements in the flow were performed in the range of the chordwise
coordinate x = 438.2 to 547.0 mm and also over the disturbance source at x =
404.2 mm, z̄ = 0. Six vibration frequencies were considered in the experiments, as
indicated in the first row of table 1. The corresponding values of the non-dimensional
frequency parameter F = 2πfν/Ū2

es×106 are given in the second row of table 1. These
frequencies are referenced to the centre of the vibrator (where ν is the kinematic
viscosity of the air and Ūes = 6.26 m s−1 is the local potential flow velocity at the
boundary layer edge).

For each fixed frequency, a typical data set consisted of seven spanwise (in the
z-direction) distributions of velocity fluctuations measured at x = 438.2, 456.3, 474.4,
492.6, 510.7, 528.8, and 547.0 mm, and a normal-to-wall profile measured over the
centre of the vibrator at x̄ = 446 mm, z̄ = 0 (x = 404.2 mm). The spanwise distribution
of the disturbance amplitude and phase was measured at a fixed non-dimensional
distance from the wall corresponding to the maximum of the x̄-disturbance velocity,
y0(x) = ymax(x) ≈ δ1(x). This distance corresponds to Ū/Ūe = 0.60 (see Gaponenko
et al. 1995).

2.2. Surface-vibration measurements

The membrane displacement shape during its oscillation was investigated using four
different experimental techniques: (i) the laser-beam method, (ii) the hot-wire method,
(iii) the hydrostatic method, and (iv) the cathetometer method. Methods (i), (iii) and
(iv) were used for measurement of the membrane oscillation amplitudes, while method
(ii) was used to obtain the oscillation phases. Measurements (i) and (ii) were performed
inside the wind-tunnel test section simultaneously (or nearly simultaneously) with
investigations of the cross-flow receptivity, while measurements (iii) and (iv) were
conducted separately and aimed to check an accuracy of the laser-beam technique (i).
The laser-beam method is based on measurements of the deviation of a laser beam
reflected from the surface of the vibrator. The magnitude of deviation D was measured
on a screen for various positions of the point of reflection along the x′-coordinate.

The absolute value of the x′-coordinate was defined as x′ =
√

(x− xs)2 − z2, while
the orientation of the x′-axis with respect to the x-axis was varied. Then a spatial
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derivative of the amplitude of membrane oscillation Dm = dAm/dx
′ was determined as

Dm(x′) =
1

2
tan−1

(
D(x′)
L

)
≈ D(x′)

2L
, (1)

where L is the distance along the reflected beam from the point of reflection (on
the membrane surface) to the screen, and L � D. The membrane displacement was
determined by means of integration as

Am(x′) =

∫ R0

−R0

Dm(x′) dx′, (2)

where R0 = 10 mm is the membrane radius.
The hot-wire method (ii) was based on hot-wire measurements in the flow over the

vibrator. This method was used to determine the phase of the membrane oscillation.
The normal-to-wall disturbance profile was measured at the position of the source
centre (x = 404.2 mm, z̄ = 0). Then, the phase distribution was extrapolated to
the wall by means of a curve fit in the near-wall region with a straight line. The
eigenmodes excited by the vibrator in its near field have zero amplitude on the wall,
while the bounded oscillations produced by the membrane displacements have a
maximum on the wall, and the phase of this signal is equal to the phase of vibration
plus 180◦.

The hydrostatic method (iii) provided an additional measure of the membrane
displacement based on fluctuations of the air volume displaced by the membrane
during oscillation. This method assumes the shape of the membrane based on the
laser-beam measurement. The measurements were conducted at zero frequency of
oscillation simultaneous with the laser-beam measurements.

The cathetometer method (iv) is relatively simple. It is based on a direct measure-
ment of microscopic displacement of the membrane centre during oscillation. The
cathetometer is a kind of microscope (or telescope) for precise measurements of
vertical displacements. These measurements were also conducted at zero frequency
of vibration simultaneously with the laser-beam measurements. The accuracy of this
method was estimated as ±3 microns.

Methods (iii) and (iv) have shown that the laser-beam method gives sufficiently
accurate absolute values of the membrane oscillation amplitudes.

2.3. Determining the experimental receptivity functions

The procedure for the experimental data analysis was similar to that used in previous
studies of vibration receptivity performed in two-dimensional boundary layers by
Ivanov et al. (1998), Kachanov, Koptsev & Smorodskiy (2000) and Bake et al. (2002).

2.3.1. Instability waves

To find the localized receptivity coefficients experimentally it was necessary to
determine the initial (i.e. at the position of the surface non-uniformity) amplitudes and
phases of the instability modes for every fixed value of the disturbance frequency and
for various values of the spanwise wavenumber β. Due to the so-called near field, the
initial complex amplitudes of the cross-flow instability modes could not be measured
directly. Therefore, the amplitudes were determined in the present experiments by
an upstream extrapolation of the experimental data. The experiments have shown
that the normal-mode amplitudes have an almost exponential downstream behaviour,
while their phases grow almost linearly. However, due to the streamwise variation
of the flow and the disturbance parameters, the growth rate −αi and the streamwise
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wavenumbers αr depended weakly on the streamwise coordinate x. This made the
procedure for determining the initial spectral amplitudes and phases somewhat more
complicated. These procedures are described in §§ 5.1 and 5.2 for the travelling cross-
flow waves, and in §§ 7.1 and 7.2 for the steady cross-flow perturbations.

Measurements are made at a distance y = ymax above the wall, where the streamwise
component of the velocity perturbation is at a maximum. At the conditions of the
present experiments, ymax ≈ δ1 (the Ū-profile displacement thickness), or Ū/Ūe = 0.60.
The initial spectrum of the excited instability modes measured at y = ymax is

B1max(β) ≡ B0max(β)eiφ0max(β), (3)

where B0max(β) and φ0max(β) are the real initial amplitude and phase spectra. The
complex spectrum B1max(β) can also be regarded as a function of two components of
the wavevector: β and αr . The spanwise wavenumber β is a free variable, while the
chordwise wavenumber αr depends on β according to the dispersion relationship

α̃r = αr(β). (4)

(The tilde over αr denotes that the streamwise wavenumber is not a free variable). The
dispersion relationship (4) represents a curve in the plane (αr, β), while the amplitude
and phase parts of the initial spectrum B0max = B0max(α̃r, β) and φ0max = φ0max(α̃r, β)
represent curves in the three-dimensional spaces (B0max, αr, β) and (φ0max, αr, β) respect-
ively.

2.3.2. Surface vibrations

The y displacement of the membrane from an equilibrium state Ym can be described
as

Ym(x′, t) = fm(x′)eiωt, x′ 6 R, (5)

where R is the radius of the membrane, ω = 2πf is the real angular frequency of
oscillation, x′ =

√
x2 + z2 is a radial coordinate with its origin at the membrane centre,

and fm(x′) is the complex function which characterizes the shape of the membrane
displacement. Note that

fm(x′) = Am(x′) exp[iφm(x′)] at x′ 6 R,
fm(x′) = 0 at x′ > R,

}
(6)

where

Am(x′) = Am0am(x′) (7)

is a real function which characterizes the amplitude of the membrane displacement
during oscillation. Am0 is the peak amplitude of the membrane and am(x′) is a
normalized amplitude function. The membrane displacement phase is written as

φm(x′) = φs + ϕm(x′), (8)

where φs is the phase in the centre and ϕm(x′) is a function for which ϕm(0) = 0.
Function (6) is localized in space and can be double Fourier transformed along

the x- and z-coordinates using the Fourier integral. Then the complex wavenumber
spectrum of the membrane vibration shape can be determined as

Cm1(αr, β) =

∫ ∞
−∞

∫ ∞
−∞
fm(
√
x2 + z2)e−i(αrx+βz) dx dz (9)

where

Cm1(αr, β) = Cm(αr, β)eiλm(αr ,β), (10)
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and Cm, λm are real functions: Cm is the spectral amplitude and λm is the spectral
phase.

2.3.3. Receptivity function

Following Fyodorov (1988), for every fixed frequency of vibration we can define
the complex receptivity function

Gr1(αr, β) = Gr(αr, β)eiϕr(αr ,β) (11)

(where Gr and ϕr are real) as follows:

Gr1(α̃r, β)
def
=
B1max(α̃r, β)

Cm1(α̃r, β)
, (12)

Gr(α̃r, β)
def
=
B0max(α̃r, β)

Cm(α̃r, β)
, (13)

ϕr(α̃r, β)
def
= φ0max(α̃r, β)− λm(α̃r, β). (14)

Functions Cm(αr, β) and λm(αr, β) represent surfaces in the three-dimensional spaces
(Cm, αr, β) and (λm, αr, β), while functions Cm = Cm(α̃r, β) and λm = λm(α̃r, β) (the
so-called resonant spectral modes of vibration) correspond to curves lying on these
surfaces. The projections of these curves onto the plane (αr, β) correspond to the
experimentally determined dispersion curve (4).

Of course, the complex receptivity function Gr1 depends also on the frequency f
and the basic flow parameters.

2.4. Theoretical approach

The receptivity theory is based on a linear perturbation to the infinite swept-wing
boundary layer considered in the experiment. We introduce a small parameter ε =
Am0/δ1s to characterize the amplitude of the surface vibration (or height of the surface
roughness). The vibrator amplitude Am0 is defined in § 2.3.2, and the displacement
thickness δ1s is defined in § 3.2. The total velocity satisfies the surface boundary
conditions

u = 0, v = ε
∂G

∂t
, w = 0 at y = εG(x, z, t) = εH(x, z)e−iωt, (15)

where H(x, z) is a function describing the vibrator-membrane shape and ω is the
angular frequency of the membrane harmonic oscillation. Here the spatial coordinates
are referenced to the centre of the vibrator. The velocity is decomposed into a basic-
state velocity V and a perturbation velocity vε. The total velocity is written as

v(x, y, z, t) = V (y) + εvε(x, y, z, t). (16)

The basic-state velocity is given by the Falkner–Skan–Cooke solution for given values
of the Hartree parameter βH and the local edge sweep angle χe. The parameter values
are chosen to match the experiment at the location of the comparisons (generally, at
the centre of the vibrator). The chordwise variation of the basic flow is neglected in
the local analysis, following the parallel-flow approximation. Substituting the velocity
expansion into the Navier–Stokes equations leads to the Orr–Sommerfeld and Squire
equations governing the perturbation velocity (Crouch 1992, 1993). The boundary
conditions are homogeneous outside the boundary layer and non-homogeneous at
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the wall. For small ε� 1, the surface boundary condition can be linearized to yield

uε = −dU

dy
H(x, z)e−iωt, vε = −iωH(x, z)e−iωt, wε = −dW

dy
H(x, z)e−iωt at y = 0.

(17)

Under the parallel-flow and infinite swept-wing approximations, the coefficients in
the governing equations are independent of x and z. Thus, the surface perturbation
and the associated perturbation velocities are represented by Fourier integrals similar
to the experimental analysis. After calculating the velocity components in Fourier
space, the physical velocities are determined by integrating over α and β. For example,
the u-velocity component is written as

uε(x, y, z, t) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞
ûε(α, y, β, ω)ei(αx+βz) dα dβ e−iωt. (18)

The integration over α is taken in the complex plane for given values of ω and β.
Focusing on the modes that dominate the solution downstream, the α integral is given
by the residue associated with the least-stable eigenmode αCF (β, ω). This follows the
analysis for acoustic excitation of travelling cross-flow instabilities and Tollmien–
Schlichting instabilities given in Crouch (1993) and Crouch (1992), respectively. These
papers provide additional details about the analysis and the numerical method used
to evaluate the receptivity coefficients. The complex modal disturbance amplitude at
the source (for a given ω and β) is then given by

B(β, ω) = εK(αCF , β, ω)Ĥ(αCF , β). (19)

The physical amplitude A for the harmonic source is obtained by integrating B
over β. The modal amplitude B is the product of the source vibration amplitude ε, the
Fourier transform of the source shape Ĥ (evaluated at the eigenmode wavenumber
αCF ), and the complex receptivity coefficient K . The amplitude spectra, B(β), and
the receptivity-coefficient spectra, K(β), are the focus of the comparisons with the
experiment.

Earlier studies have shown that non-parallel effects can be significant for the
cross-flow instability receptivity problem (Colles & Lele 1999 and Bertolotti 2000).
However, for the current experimental conditions non-parallel effects are estimated
to be small. Furthermore, it is important for practical applications to assess the more
simple locally parallel approach for predicting the initial cross-flow mode amplitudes.
Most of the results and conclusions from the comparison with the experiment can be
generalized to non-parallel analyses.

3. Properties of the basic flow and the disturbance source
The characteristics of the three-dimensional mean flow field over the experimental

model were measured accurately in both the potential flow and the boundary layer
using X- and V-shaped hot-wire probes. The flow field has been documented by
Kachanov et al. (1989) and Kachanov & Tararykin (1990). In the measurement
region, this flow is similar (except for wall curvature effects) to the flow over a real
swept wing with a sweep angle of 25◦.

3.1. Potential flow structure

The structure of the potential flow over an infinite swept wing is independent of the
spanwise z-coordinate. The Ū and W̄ velocity components and the yaw angle γ̄e of the
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Figure 3. Spanwise distributions of streamwise (Ūe) and spanwise (W̄e) potential flow velocity
components and yaw angle (γ̄e) of the velocity vector.

mean velocity vector at the boundary layer edge are shown in figure 3 versus z. These
measurements were conducted outside the boundary layer at a distance y = 18 mm
from the wall and x = 427.8 mm from the leading edge, and Ū0 = 8.76 m s−1. Within
experimental accuracy, all three quantities are independent of the z-coordinate. Within
the primary measurement region (which lies far from the test-section sidewalls at
approximately −110 < zc < +110 mm), the streamwise distributions of the static
pressure coefficient (Cp) and the streamwise (Ū) and spanwise (W̄ ) components of
the mean velocity show little z variation (Kachanov et al. 1989). This testifies to the
uniformity of the potential flow along the spanwise coordinate.

The experiments by Kachanov et al. (1989) also showed the independence (within an
experimental accuracy) of the potential flow structure from the free-stream velocity
Ū0. This was measured in the region from Ū0 = 2.8 to 11.1 m s−1 for Cp(xc), and
from 4.74 to 8.76 m s−1 for Ue(xc), We(xc) and γe(xc). Shown in figure 4(a) are the
x̄-distributions of the Ū- and W̄ -components of the potential flow velocity vector
measured along the central line of the model at a distance y = const. = 18 mm
in a wide region of the downstream coordinates starting with the free stream. The
streamwise dependence of the yaw angle γ̄e is presented in figure 4(b) for several
values of the z̄-coordinate and for two free-stream speeds. The curve represents a
polynomial approximation of all experimental points. It is seen that in the main
receptivity measurement region (483.5 < x̄c < 603.5 mm) the yaw angle changes by
less than 1◦. At the position of the surface vibrator the local value of the yaw angle of
the potential-flow velocity vector was γ̄e = −1.17◦. This corresponds to a local sweep
angle χc = 25 + γ̄e = 23.83◦.

A streamline calculated from the distributions shown in figure 4(a) is presented in
figure 5. The position of the leading edge, the primary measurement regions, and the
source position are also shown in figure 5 schematically. Note that the scales of the
x̄- and z̄-axes are significantly different in this figure and the angles of turning of
the streamline are not realistic (see figure 4b).

In the present experiments the free-stream velocity was Ū0 = 6.22 m s−1. A stream-
wise distribution of the Ū-component of the potential-flow velocity vector, measured
at y = 10 mm from the model surface, is shown in figure 6. It is seen that within the
main measurement region the function Ūe(x̄c) is very close to a straight line (the curve
shown in figure 6 represents a parabolic approximation of the experimental points).



104 V. R. Gaponenko, A. V. Ivanov, Y. S. Kachanov and J. D. Crouch

0
–2

0

2

4

6

8

10

12

200 400 600 800

xc (mm)

Leading edge
(a)

Ue

We

(b)

xc (mm)

300 400 500 600 700 800
0

1

2

3

4
z = 0 mm, U0 = 4.74 m s–1

z = 0 mm, U0 = 8.76 m s–1

z = +100 mm, U0 = 4.74 m s–1

z = –110 mm, U0 = 4.74 m s–1

–ç
e 

(d
eg

.)
U

e,
 W

e 
(m

 s
–1

)

Figure 4. Downstream distributions of (a) streamwise (Ūe) and spanwise (W̄e) potential flow
velocity components, and (b) yaw angle (γ̄e) of the velocity vector. y = 18 mm.

The streamwise variation of the pressure gradient parameter (Hartree parameter)

βH =
2ξ

Ue(x)

dUe(x)

dξ
, ξ =

∫ x

0

Ue(x) dx (20)

is also shown in figure 6. The Hartree parameter grows slowly until x̄c ≈ 600 mm
(x ≈ 543.8 mm) and then begins to decay further downstream. At the position of
the surface vibrator (x̄ = 446 mm) the local value of the Hartree parameter was
βH = 0.42.

3.2. Boundary layer structure

Typical normal-to-wall distributions of the mean-flow velocities U∗ and W ∗ are
shown in figure 7(a, b). The corresponding profiles of the yaw angle of this vector
are presented in figure 7(c). The experimental points were obtained at x = 518.4 mm,
z = 19.3 and 6.1 mm, Ū0 = 8.76 m s−1. These profiles are based on slightly different
conditions than those considered for the main receptivity measurements. The theoret-
ical curves are based on the Falkner–Skan–Cooke similarity solutions for the mean
flow, with βH = 0.44 and χe = 22.9◦. Very good agreement is seen between the theory
and experiment, showing that the experimental and theoretical basic flows are very
close to each other in the present study. Similar profiles were obtained by Fyodorov
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and the Hartree parameter (βH ). Ū0 = 6.22 m s−1; y = 10 mm.

based on the full boundary-layer equations and the experimental Ūe(x̄) distribution
and sweep condition (Kachanov et al. 1989).

In the present experiments a set of Ū-velocity profiles was also measured in the
chosen basic-flow regime at various x- and z-positions over the model. The pro-
files taken along the line z̄ = 0 at different streamwise positions (from x = 404.2
to 601.3 mm) are shown in figure 8(a). A similar set of profiles, but obtained at
fixed x-coordinate (x = 465.4 mm) for different spanwise positions, is shown in
figure 8(b). Figure 8 shows that the form of the non-dimensional profiles is in-
dependent of spatial coordinates within the receptivity measurement region. This
is corroborated by figure 9(a, b) where the streamwise and spanwise distributions
of the boundary-layer displacement thickness δ1, momentum thickness δ2 and the
shape factor H = δ1/δ2 are shown together with their approximations with straight
lines. All these values are essentially independent of both the x̄c- and z-coordinates.
There is only a very slow downstream growth (along the x̄c-coordinate) of the
displacement thickness (around 1.5% per 100 mm) and the momentum thickness
(around 0.8% per 100 mm), and a very small decay of the shape factor H (around
0.6% per 100 mm). The local Reynolds number Re = Ūeδ1/ν grows slowly down-
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stream, due to the increase of Ūe in the main stream. At the centre of the surface
vibrator (x̄ = 446 mm), the boundary layer displacement thickness δ1s was equal to
1.21 mm and the local Reynolds number was Re = 498. The parameters used for the
Falkner–Skan–Cooke similarity solution at the vibrator location are βH = 0.42 and
χe = 23.8◦.
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3.3. Shape of membrane oscillations

As described in § 2.2, the primary measurement of the vibration shape was based
on the laser-beam method for the amplitudes and the hot-wire method for the
phases. These measurements were conducted both before and during the experiments
in the wind tunnel. Some results of these measurements are shown in figure 10.
The normalized distributions of the membrane displacement amplitudes am(x′) (see
§ 2.3.2) were measured at various disturbance frequencies and voltage inputs. Within
experimental accuracy, the shape is independent of both the frequency and the input
voltage. The shape of these curves is approximated very well by an eighth-order
polynomial (shown in figure 10 with a line) that is symmetric with respect to the
membrane centre, and consequently, the coefficients for odd powers of x′ are very
close to zero. The measurements performed at various orientations of the x′-axis
have shown an axisymmetry of the membrane oscillation. The polynomial presented
in figure 10 (and used for Fourier decomposition of the membrane shape) had
the following coefficients: a0 = 1.00545, a1 = 0, a2 = −1.744776 × 10−2, a3 = 0,
a4 = +4.99897× 10−5, a5 = 0, a6 = +3.77209× 10−7, a7 = 0, and a8 = −1.334× 10−9,
where an is the coefficient at x′n for n = 0, 1, 2, . . .
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The dimensional values of the maximum amplitude of the membrane displacements
Am0 are indicated in table 1 together with the corresponding non-dimensional am-
plitudes (non-dimensionalized by δ1s = 1.21 mm). At these amplitudes the properties
of the wave trains generated by the source were shown to be independent of the
magnitude of vibration, i.e. both the receptivity and the stability mechanisms were
linear. The measured phases were nearly uniform over the entire membrane.

3.4. Wavenumber spectrum of vibrations

Using the polynomial coefficients, the two-dimensional wavenumber spectrum of the
membrane vibrations was determined according to the procedure described in § 2.3.2.
This spectrum is unique for all regimes of excitation studied in this paper because the
normalized shape of the vibrations is independent of both frequency and amplitude.

Qualitatively, the general shape of this spectrum is shown in figure 11. (Only one
half of this axisymmetric spectrum is plotted there.) The amplitudes are shown in
logarithmic scale. The amplitude spectrum has a central cupola and side maxima
(‘rings’) with lower magnitude (only a part of first ‘ring’ is seen in figure 11). The
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Figure 11. (a) Amplitude and (b) phase parts of the spectrum of the vibrator shape.

spectrum is shown in the wavenumber range |βδ1s| 6 0.8 and |αrδ1s| 6 0.8. The central
cupola has a radius of about |kδ1s| ≈ 0.68.

3.5. Resonant spectra of vibrations

The resonant modes in the two-dimensional spectrum of vibration were determined
using the procedure described in § 2.3.3. The ‘initial’ (i.e. at the source position)
dispersion curves were determined experimentally for every disturbance frequency
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Figure 12. (a) Amplitude and (b) phase parts of the resonant spectra of vibrations.

(see § 5.3 below). The amplitude and phase of these resonant spectra (normalized
by their maximum values Am0/δ1s) are presented in figure 12. The amplitudes C̃m
(figure 12a) and the phases λ̃m (figure 12b) of spectral components are seen to be
very weakly dependent on the disturbance frequency (at the present experimental
conditions). The constant phase shifts between the resonant phase spectra obtained
for various frequencies (figure 12b) are primarily conditioned by the method of signal
generation. Two different power amplifiers and two different types of loudspeaker
were used for generation of the disturbances with different frequencies. These phase
differences are not important for subsequent analysis because they subtracted out.
The distributions presented in figure 12 were used for determining the receptivity
functions for each disturbance frequency.

4. Downstream evolution of wave trains
4.1. Spanwise distributions within wave trains

A typical set of spanwise distributions of the disturbance amplitude and phase is
shown in figure 13. These quantities are measured near the maxima in the amplitude
profile (at Ū/Ūe = 0.60) for frequency f = 24.8 Hz, and at seven streamwise positions:
x1 = 439.2 mm, x2 = 456.3 mm, x3 = 474.5 mm, x4 = 492.6 mm, x5 = 510.7 mm,
x6 = 528.8 mm, x7 = 547.0 mm (which correspond to the x̄-coordinates: 483.5, 503.5,
523.5, 543.5, 563.5, 583.5, and 603.5 mm at z̄ = 0 respectively). Similar sets of spanwise
distributions were obtained for other frequencies studied.
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For all frequencies considered, the amplitude distributions are non-symmetric even
though the disturbance source is symmetric. The amplitude distributions have their
main maximum near the wave-train axis (zc = 0) and demonstrate a quasi-exponential
behaviour in their ‘tails’ (see figure 13b). In the range zc > −10 mm (corresponding to
the most powerful fluctuations) the phases grow with the z-coordinate, demonstrating
that the instability modes propagating along the z-axis dominate the wave train, in
agreement with previous observations (see e.g. Gaponenko et al. 1995).

The phase jump near zc ≈ −10 mm is about ±180◦. Between the chordwise positions
x5 = 510.7 mm and x6 = 528.8 (for frequency f = 24.8 Hz) the jump changes its
sign. (Similar behaviour is also observed for frequencies 21.43 and 17.91 Hz.) This
phenomenon corresponds to a kind of ‘bifurcation’ of the disturbance streamline
patterns in the (y, z)-plane and does not indicate any jump in the streamwise phase
distributions in the range zc > −10 mm. A simple shift of the phase values in this range
by plus or (minus) 360◦ gives a gradual monotonic downstream growth of phases at
any fixed spanwise position except for the vicinity of the point zc = −10 mm of the
‘bifurcation’. This phase behaviour is very clear when the disturbance profiles shown
in figure 13(a, c) are plotted in the complex plane (of real and imaginary parts of
the complex disturbance amplitude) as parametric functions of the y-coordinate for
different values of the x-coordinate (not shown). In such a plot, the phase ‘bifurcation’
is observed at the x-coordinate for which the line in the complex plane crosses the
origin of the coordinate system. In the vicinity of the phase-jump point the disturbance
amplitude is close to zero and any infinitely small change of the trajectory in the
complex plane leads to a change of the phase jump direction.

Data like those shown in figure 13 represent the most important results of the
measurements in the flow, which have been used for the subsequent analysis.

4.2. Wavenumber spectra of cross-flow instability modes

The amplitudes and phases of the spanwise wavenumber spectra, obtained by means
of the spatial Fourier transform of the distributions shown in figure 13, are presented
in figures 14(a) and 14(b) respectively. Similar sets of spectra were obtained for all
other frequencies studied.

There are two distinct peaks in the amplitude spectra. They become increasingly
pronounced during the downstream displacement along the chordwise coordinate
x. At the frequency f = 24.8 Hz the peaks are located near βδ1s ≈ +0.22 and
−0.11. The presence of two main maxima in the spanwise-wavenumber spectrum is
a common feature observed for all frequencies. This feature is simply explained by a
rapid attenuation of the quasi-two-dimensional instability modes with the spanwise
wavenumbers close to zero found in previous experiments (see e.g. Gaponenko et al.
1995). However, the shape of the distributions shown in figure 14 is also influenced
significantly by the resonant spectrum of vibrations (see § 3.3 and figure 12a) and
by the dependence of the receptivity coefficients on the spanwise wavenumber which
have to be determined in the present study.

The phase part of the spectra shown in figure 14(b) is very flat initially (at
x = 439.2 mm) with some phase jumps near the points βδ1s ≈ +0.7 and −0.6.
This observation is consistent with the constant phase of spectral modes in the
resonant spectrum of vibrations (see § 3.5 and figure 12b) and suggests a rather
weak dependence of the receptivity phases on the spanwise wavenumber. Further
downstream, the phase distributions are deformed, in general agreement with stability
observations (see Gaponenko et al. 1995).
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Figure 14. Spanwise wavenumber spectra of the wave train excited by the vibrator at f = 24.8 Hz,
and determined at seven chordwise positions: (a) spectral amplitudes; (b) spectral phases.

5. Initial characteristics of excited cross-flow instability waves
5.1. Initial amplitude spectra of cross-flow waves; comparison of theory and experiment

According to the method of analysis described in § 2.3 the initial (i.e. at the vi-
brator centre) amplitude spectra of the cross-flow instability modes were obtained
by means of an upstream extrapolation of the spectra measured downstream of the
source.

A set of streamwise distributions of logarithms of the spectral amplitudes, obtained
for all frequencies at one value of the spanwise wavenumber (βδ1s = 0.417), is
shown in figure 15. All these distributions are approximated (using a least-square
fit) by parabolas. The downstream variation of the spectral amplitudes is quite close
to exponential, but the parabolic curve fit is somewhat better. This is because the
spectral modes change downstream together with the changing mean-flow parameters
(i.e. the Hartree parameter, the local Reynolds number and the local sweep angle).
The parabolic approximation was used for determining the initial spectra of the
cross-flow instability waves.
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The initial amplitudes at the source position B0max(β, f) ≡ B(xs) were determined
as

ln[B(xs)] = ln[Bp(xi)]− (xi − xs)[∂(lnBp)/∂x]x=xi , (21)

where Bp(x) is the parabolic approximation of the experimental points, and xi is
equal to x1 for all disturbance frequencies except for the lowest ones. For f = 12.0 Hz,
xi was equal to x2 and for f = 9.02 Hz to x3. For very low frequencies, the values
of the streamwise wavenumber become very small and the near field of the source
becomes extended in the streamwise direction. As a result, the positions of the points
x1 = 439.2 mm (for f = 12.0 Hz) and x1 = 439.2, x2 = 456.3 mm (for f = 9.02 Hz)
become too close to the source (compared to the streamwise wavelengths of these
disturbances) and could not be considered far field. For example, the frequency 24.8 Hz
has a streamwise wavelength λ∗x around 10.5 mm for βδ1s = 0, and around 16.0 mm
for the waves close to the most unstable (βδ1s = 0.49), whereas for the frequency
12.0 Hz these values are 19.4 and 37.1 mm respectively, and for the frequency 9.02 Hz
they are 24.4 and 44.4 mm. The latter values are comparable with the distances
x∗1 − x∗s ≈ 37 mm and x∗2 − x∗s ≈ 57 mm (where x∗s is the source position).

The results of extrapolation of the spectral amplitudes to the position of the source
are shown in figure 16 where the spectra of the amplitudes B0max normalized by the
corresponding non-dimensional amplitudes of vibration Am0/δ1s are presented for all
disturbance frequencies. The normalized initial spectra closely resemble the resonant
spectra of vibration (see § 3.5 and figure 12a) showing, at the same time, a significant
frequency dependence, in contrast to the resonant spectra.

The comparison of the experimental and theoretical initial spanwise-wavenumber
spectra of the cross-flow instability waves is presented in figure 17 for three frequencies
of vibration. The best agreement is observed at the lowest frequency f = 9.02 Hz.
At higher frequencies and in a range of low values of the spanwise wavenumber
βδ1s (from 0 to about 0.2) the theory predicts somewhat greater values of the initial
amplitudes compared to the experiment. However, in the range βδ1s ≈ 0.3 to 0.6,
which includes the most unstable cross-flow modes (see Gaponenko et al. 1995), the
agreement between the theory and the experiment is very good in the full range of
frequencies studied.
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5.2. Initial phase spectra of cross-flow waves

The downstream evolution of the spectral phases is shown in figure 18 for one value of
the spanwise wavenumber (βδ1s = 0.417) at all frequencies. Similarly to figure 15, the
distributions are approximated by parabolas that are, however, quite close to straight
lines. Again the x-variation of ∂φ/∂x is connected with the downstream change in
the streamwise wavenumbers αr resulting from the changing mean flow. The shape of
the phase distributions is almost independent of both the frequency and the spanwise
wavenumber, though the slope of the curves increases with frequency.

The parabolic approximations (shown in figure 18) were used for extrapolation of
the spectral-mode phases to the position of the source. According to this procedure
the initial phases of spectral modes φ0max(β, f) ≡ φ(xs) were determined as

φ(xs) = φp(x1)− (x1 − xs)(∂φp/∂x)x=x1
, (22)

where φp(x) is the parabolic approximation of the experimental phase distributions.
The result of such extrapolation is shown in figure 19. The initial spectral phases

φ0max − φs (determined with respect to the phase of oscillation measured in the
membrane centre φs) have almost the same spanwise-wavenumber distributions for
all frequencies. This behaviour is significantly different from that of the disturbance
amplitudes (compare with figure 16).
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Figure 19. Phases of initial spanwise-wavenumber spectra of cross-flow modes excited by surface
non-uniformity at all studied frequencies.

5.3. Initial dispersion functions for cross-flow waves

The initial dispersion functions αr(β, x = xs) of the cross-flow instability waves
are needed for the selection of the resonant modes in the spectrum of vibration
(see § 3.5). They were obtained from experimental phase distributions like those
shown in figure 18. The initial dispersion function is determined by means of a
linear approximation to the functions φ(x) (for each fixed β and f) using the three
x-positions closest to the source (x1 = 439.2, x2 = 456.3 and x3 = 474.5 mm). This
means that the dispersion function itself is not extrapolated. The dispersion function
at the source is chosen to be the same as that of the nearest measurement station.
The above assumption is substantiated by the fact that all of the φ(x) distributions
show only small deviations from a straight line (see § 5.2 and figure 18).

The resulting initial dispersion functions are presented in figure 20 for all frequen-
cies. The curves shown in figure 20 have been used in the procedure for selection of
the resonant modes on the two-dimensional spectrum of the vibrator (see § 3.5).
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Figure 20. Initial dispersion functions of excited cross-flow modes for all frequencies studied.
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Figure 21. Magnitudes of the receptivity coefficient versus spanwise wavenumber
for all frequencies studied.

6. Receptivity to surface vibrations
6.1. Vibration receptivity coefficients; comparison of theory and experiment

The definition of the receptivity function and the procedure for its experimental deter-
mination are presented in § 2.3. These functions were obtained experimentally for all
disturbance frequencies at spanwise wavenumbers βδ1s from −0.4 to +0.5 (figure 21).
The latter value is very close to the most unstable cross-flow modes for all frequencies.
Data were also obtained for higher absolute values of the spanwise wavenumbers but
they are not reliable due to very low values of the spectral amplitudes and rather
large scatter.

Figure 21 shows that the spanwise-wavenumber dependence of the receptivity
coefficient becomes weaker as the frequency tends to zero, and the values of the
receptivity coefficients become smaller. For high absolute values of βδ1s the frequency
dependence of the receptivity coefficients is stronger than that observed for small
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Figure 22. Comparison of theoretical and experimental receptivity coefficients for surface
vibrations. (a) f = 15.0 and (b) 9.02 Hz.

values of βδ1s. Some additional properties of frequency dependence of the receptivity
coefficients are discussed in § 7.

The comparison of the receptivity coefficients obtained in theory and experiment
is presented in figure 22 for two frequencies of vibration f = 15.0 and 9.02 Hz. The
experimental and theoretical values of the receptivity response functions are seen to be
close to each other, especially in the range of the spanwise wavenumber corresponding
to the most unstable cross-flow modes. This agreement is rather good taking into
account the extreme complexity of the experimental procedure for determining the
receptivity coefficients – including an extrapolation of the experimental results to the
position of the source.

Note that the results presented in figures 21 and 22 are independent of the specific
shape of the vibrator both in the theory and the experiment because the receptivity
coefficients are obtained in Fourier space for each normal oblique mode separately.

In general, the results shown in figures 17 and 22 testify that the locally parallel
receptivity theory is able to predict correctly the receptivity characteristics for surface
vibrations and the initial spectra of the excited travelling cross-flow modes. The
differences between the theoretical and experimental values observed for low spanwise
wavenumbers is probably due to restricted accuracy of the experimental data. The
finite length of the spanwise samples used in the experiment results in increased
error in the spectral estimates at low wavenumbers. Non-parallel effects are another
possible source of the observed differences.

6.2. Vibration receptivity phases

The phases for the complex receptivity functions were obtained as differences between
the initial spectral phases of the excited cross-flow modes φ0max (see § 5.2 and figure 19)
and the phases of the corresponding modes in the resonant spectrum of the vibrator
λ̃m (see § 3.5 and figure 12b). The result is shown in figure 23. The phase of the
receptivity functions turned out to be almost independent of both the disturbance
frequency and the spanwise wavenumber.

The receptivity phase characterizes a phase delay between the surface vibration
and the cross-flow instability wave excited by it. The receptivity phases are important
at nonlinear stages of transition on swept wings for two main reasons. First, the
phase shifts influence significantly the local amplitudes of the excited disturbances,
which can be very high in the case of ‘in-phase’ superposition of the generated cross-
flow instability modes, and vice versa. In the case of steady cross-flow disturbances
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Figure 23. Phases of receptivity coefficients versus spanwise wavenumber
for all frequencies studied.

(see § 7) the ‘in-phase’ superposition can give rise (locally) to very strong high-shear
layers which can accelerate the process of secondary instability and the laminar flow
breakdown (see e.g. Kohama 1987). Secondly, the phase relationships between spectral
modes are very important for the resonant interactions of various instability modes
(see e.g. experiments by Kachanov & Levchenko 1984 for the Blasius boundary layer
and Borodulin, Gaponenko & Kachanov 2000 for a swept-wing boundary layer). The
resonances significantly influence the laminar–turbulent transition, and they can be
efficient or not depending on the relative phase of the interacting waves.

7. Receptivity to surface roughness
The linear receptivity coefficients for localized surface roughness are determined

by an extrapolation of results obtained for surface vibrations (for several frequencies
close to zero) back to the zero frequency. There are several observations that justify
such an approach. First, it is known from previous studies that the travelling and
steady cross-flow disturbances represent physically the same type of instability modes.
Second, the extrapolation of stability characteristics to zero frequency has shown
good quantitative agreement with those calculated from the linear stability theory for
the steady cross-flow disturbances. Third, very small frequencies of vibration, with a
period T = 1/f � Tb = L/Ū0 (where Tb is a characteristic time scale of the basic flow
and L is a swept-wing chord), can be regarded physically as zero frequency. The flow
passes over the wing several times during a time interval when the vibrator remains
practically frozen (i.e. it represents a roughness). Thus, the roughness–receptivity
characteristics can be obtained experimentally by means of an extrapolation to zero
frequency.

7.1. Initial amplitude spectrum of steady cross-flow modes;
comparison of theory and experiment

The frequency dependence of the initial spectral amplitudes of cross-flow instabil-
ity waves (normalized by the non-dimensional amplitudes Am0/δ1s of the membrane
oscillations in its centre) is shown in figure 24 for one value of the spanwise wavenum-
ber (βδ1s = 0.417). The data are approximated very well by a straight line. Similar
behaviour was observed for other values of the spanwise wavenumber except for
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Figure 24. Initial amplitudes of normal cross-flow modes excited by surface non-uniformities
versus frequency for βδ1s = 0.417.

quasi-two-dimensional modes with spanwise wavenumbers close to zero. Distributions
like that shown in figure 24 have been used for extrapolation of the initial spectral
amplitudes to the frequency f = 0 for all values of the spanwise wavenumber.

The results of extrapolation to the zero frequency of vibration are shown in figure 16
(together with initial spectra of disturbances obtained at non-zero frequencies). Two
sets of data are given based on two evaluations of the initial spectrum. The results
represent the stationary disturbance that would be produced by a surface non-
uniformity of unit magnitude, having the same shape as the vibrator. The following
two procedures for extrapolation to the zero frequency were used.

First, as shown in figure 24 the initial spectral amplitudes at non-zero frequencies
(normalized by Am0/δ1s) decrease with frequency in a linear way. This fact was used
for a simple linear extrapolation of initial amplitudes to the zero frequency (set 1 of
points in figure 16). However, for values of the spanwise wavenumber close to zero
there was larger scatter and the linear extrapolation was not satisfactory. Therefore,
in these cases an extrapolation by means of a cubic spline approximation was used
(set 2 of points in figure 16) along with the linear extrapolation. The points from the
two sets almost coincide for most values of the spanwise wavenumber, but not for
those close to zero (and not for two other points with the lowest negative values of the
wavenumber shown in figure 16). Most probably, the second set of points (connected
with lines) gives a better estimation of the initial spectrum of the cross-flow modes
with zero frequency.

The comparison of the experimental and theoretical initial spanwise-wavenumber
spectra for the steady cross-flow disturbances excited by surface roughness is pre-
sented in figure 25. In this figure the experimental amplitudes of initial spectrum
are multiplied by a factor of 2 to be consistent with the standard definition of the
receptivity amplitudes for steady surface non-uniformities (i.e. the zero coefficient in
the Fourier series is divided by two in contrast to all other coefficients). The two
sets of data for f = 0, discussed above, are shown in this figure. For small values
of the spanwise wavenumber (approximately at βδ1s < 0.16), the theory gives lower
initial amplitudes compared to the experiment. However, in this range the spanwise
wavelengths become very large and the experimental uncertainty is greater. At higher
values of the spanwise wavenumber, from βδ1s ≈ 0.2 to 0.5 (this range includes
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Figure 26. Initial phases of normal cross-flow modes excited by surface non-uniformities versus
frequency for βδ1s = 0.417.

the most unstable cross-flow modes), the agreement between the theory and the
experiment is very good.

7.2. Initial phase spectrum of steady cross-flow perturbations

The frequency dependence of initial phases of the cross-flow spectral modes is shown
in figure 26 for the spanwise wavenumber βδ1s = 0.417. Note that the phase of
the membrane vibrations φs (measured with the hot wire over the centre of the
source near the membrane surface) depends weakly on the frequency. In order to
take this dependence into account, the initial phases of cross-flow modes φ0max

shown in figure 26 are ‘normalized’ with the phases φs of the membrane vibrations.
In contrast to the spectral phases measured at fixed positions downstream of the
source (see figure 18), the ‘normalized’ initial phases φ0max−φs are almost completely
independent of the frequency and very well approximated with a straight line. The
same was observed for all other values of the spanwise wavenumber. Therefore,
the extrapolation of the initial phase to the zero frequency of vibration has been
performed with the help of straight lines.
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Figure 27. Initial streamwise wavenumber of normal cross-flow mode versus
frequency for βδ1s = 0.417.

The result of the estimation of initial spectral phases φ0max −φs for zero frequency
is shown in figure 19 together with the corresponding values for non-zero frequencies.
Almost no difference is seen between the initial phases obtained for all frequencies
including zero.

7.3. Initial dispersion function for steady cross-flow modes

The frequency dependence of the streamwise wavenumber αrδ1s is presented in fig-
ure 27 for one of the spanwise wavenumbers (βδ1s = 0.417). For most values of
the spanwise wavenumber this dependence was very well approximated with straight
lines. Therefore, the initial dispersion function αrδ1s(βδ1s) for zero-frequency disturb-
ances was estimated by means of extrapolation of the curves, like that shown in
figure 27, by straight lines. The result of this extrapolation is shown in figure 20
together with the initial dispersion functions determined for the other (non-zero) fre-
quencies. The points lying in the region of the most reliable data (from βδ1s ≈ −0.4
to βδ1s ≈ +0.6) are marked as black dots and approximated by a straight line.
The approximation is very good, and the line nearly passes through the origin of
the coordinate frame. This property is characteristic of the zero-frequency cross-flow
instability modes.

To illustrate more visually the behaviour of dispersion properties of the cross-
flow modes at the position of the source when the frequency tends to zero, some
additional dispersion characteristics are presented in figure 28. The dependence of
the wave propagation angle on the spanwise wavenumber shown in figure 28 was
determined from the initial dispersion curves (see figure 20) for all disturbance
frequencies including zero. When the frequency tends to zero, the dependence of
θ∗ on β∗ becomes weaker and weaker. For zero frequency the wave propagation
angle (i.e. the angle of inclination of the cross-flow vortices) becomes nearly constant.
Note that the jump at β∗ = 0 is not important for steady disturbances because the
stationary mode does not propagate in space. The averaged values of θ∗, determined
for positive and negative streamwise wavenumbers (separately), turned out to be
equal to +87.2◦ and −91.3◦ respectively. The difference between them is close to 180◦
with accuracy of 1.5◦. This result testifies to the reasonably high accuracy of the
extrapolation of the dispersion functions to zero frequency.
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for surface roughness.

7.4. Estimated roughness receptivity coefficients; comparison of theory and experiment

The receptivity coefficients for zero-frequency disturbances (i.e. for localized surface
roughness) are presented in figure 21 together with the results obtained for the
non-zero frequencies. Figure 21 shows that the receptivity amplitudes decrease with
frequency in a linear way. The receptivity to localized surface non-uniformities is
significantly less than that to the surface vibration. For the cross-flow waves with
βδ1s ≈ 0.4 (i.e. for the most unstable waves), the receptivity amplitudes found at
frequency 24.8 Hz are greater than those at the zero frequency by a factor of 5 to 6.
For small values of the spanwise wavenumber, this factor is around 2 to 4.

The comparison of the roughness receptivity coefficients obtained in theory and
experiment is presented in figure 29. Similarly to figure 25, the experimental receptivity
amplitudes shown in figure 29 are multiplied by a factor of 2 to be consistent with the
standard definition of the receptivity coefficients for steady surface non-uniformities.
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The two sets of data for f = 0, discussed above, are shown in this figure. Similarly
to initial amplitude spectra of the steady cross-flow perturbations (see figure 25), the
theory gives somewhat lower values at small spanwise wavenumbers (approximately
at βδ1s < 0.16). At higher values, from βδ1s ≈ 0.2 to 0.5, the agreement between
the theory and the experiment is rather good, taking into account the restricted
experimental accuracy (estimated above as ±20%) due to the complexity of the
experimental procedures. In contrast to the initial spectra shown in figure 25, the
receptivity coefficients presented in figure 29 are independent of the specific shape of
the roughness.

Similarly to the case of travelling waves, the results shown in figures 25 and 29
testify that the locally parallel receptivity theory is able to predict the receptivity char-
acteristics for steady surface non-uniformities and the initial spectra of the excited
steady cross-flow modes. Some differences between the theoretical and experimental
values observed for low spanwise wavenumbers are partially explained by the re-
stricted accuracy of the experimental data, but they may also result from neglecting
non-parallel effects.

8. Conclusions
A combined experimental and theoretical study of swept-wing boundary-layer

receptivity to localized surface vibrations and roughness has been conducted. Quan-
titative comparison is made between the experimental and theoretical results. The
frequency dependence is obtained over a range of spanwise wavenumbers for: (i)
the initial spectral amplitudes and phases of the excited cross-flow instability waves,
(ii) the initial dispersion functions of instability modes, and (iii) the receptivity coef-
ficients for the swept-wing boundary-layer subject to localized surface vibrations. An
approximation for the frequency dependence of these quantities was used to extrapo-
late the experimental data to zero frequency. As a result the initial spectrum, the initial
dispersion function, and the receptivity coefficients are evaluated experimentally for
zero-frequency perturbations (i.e. for the stationary cross-flow disturbances excited by
steady surface non-uniformities).

The swept-wing boundary-layer receptivity coefficients for surface vibrations and
roughness, obtained in the present paper, are independent of the specific shape of
the surface non-uniformities. These coefficients can be used for estimating the initial
spectra of the cross-flow instability modes for any given shape of localized (in the
streamwise direction) non-uniformity. The experimental results can also be used for
verification of numerically simulated receptivity amplitudes.

The following main conclusions can be drawn from the results of the present study.
1. Good quantitative agreement between the experimental and theoretical results

is found for localized surface perturbations. This includes receptivity amplitudes and
initial amplitude spectra of the excited cross-flow instability modes over a range of
spanwise wavenumbers (βδ1s ≈ 0.2 to 0.5) that includes the most unstable modes for
every fixed frequency. In this range the discrepancy does not exceed the experimen-
tal error. This agreement helps validate both the experimental and the theoretical
approaches used in the present study. The comparisons also show that the locally
parallel receptivity theory is able to correctly predict the initial cross-flow mode
amplitudes (at least for the swept-wing flow investigated).

2. For the conditions of the present study, the receptivity amplitudes decrease in
a linear way as the disturbance frequency tends to zero. The receptivity to surface
roughness is about 3 to 5 times smaller than that to the surface vibrations investigated.
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This factor is about 4 between the most unstable steady and travelling cross-flow
disturbances.

3. The phases of the vibration and roughness receptivity coefficients obtained
experimentally are found to be nearly independent of the disturbance frequency, and
weakly dependent on the spanwise wavenumber.

This study was supported by Boeing International Inc. and the Russian Academy
of Sciences.
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